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Motivations and Objectives

A transient nanodust population was inferred from
LADEE/UVS observations when viewing anti-sunward
from above the nightside of the Moon —

a serendipitous discovery!

Best example occurred several hours after the peak of
the narrow but intense Quadrantid meteoroid stream.

What is the source of this nanodust?

How did it get there?




Summary of UVS Dust Observations
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UVS nanodust column concentrations > ~101! m—2




What is the source of this
nanodust?

Could it be part of the impact-
generated ejecta cloud?

Krivov et al. (2003) Ejecta Cloud Predictions
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Krivov et al. (2003) Ejecta Cloud Predictions

4 Ejecta Cloud Estimates for Nanodust Abundances
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How did it get there?

What forces determine the
trajectories of nanodust
particles in the near-lunar
space environment?




Radiation Pressure on Nanodust
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Lorentz Force on Nanodust

da
a, = m_d (Esw + Vg X Byyr)
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a, = —0 [(Vg — Vsw) X Byl
Py

No charge = No Lorentz force

Lorentz Force on Nanodust

Charglng Timescales for llluminated Nanodust
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Lorentz Force on Nanodust

Equilibrium Charge on llluminated Nanodust

Equilibrium charge [e]

Any nanodust near the Moon
will be carrying a small number
of elementary charges.
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Lorentz Force on Nanodust

Acceleration due to components of Lorentz forc'el
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Lorentz Force on Nanodust
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How would these forces effect
nanodust dynamics?




Ejection Velocity Distribution of Nanodust
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Ejection Velocity Distribution of Nanodust

Cumulative Initial Ejecta Speed Distribution
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Include effects of:
E.,,=1mV m~! on grain with
ry,=20nmand ¢,=1.8V
acting AGAINST gravity.

Similar to the situation on the
duskside post-QUA.

Reduces the effective escape
velocity to 1.9 kms—L

Factor of =2 increase in
escaping ejecta.

Would act to increase
nanodust line-of-sight column
abundances.

Ejection Velocity Distribution of Nanodust

Cumulative Initial Ejecta Speed Distribution
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Opposite case:

Lorentz force acting WITH
gravity.

Similar to the situation on the
duskside post-QUA.

No nanodust can escape — it's
all effectively trapped.

Times-of-flight reduced to
<~day.

Could play a role in the post-
QUA midnight-to-dusk
decrease in UVS nanodust
column abundances.




Possible post-QUA nanodust cloud configuration?

Ejecta nanoparticles

controlled mainly by

Lorentz forces
4—

Larger ejecta
particles controlled
mainly by gravity

Solar Wind Solar
Flow Radiation

Summary and Conclusions

UVS observations of nanodust are difficult to explain!

Estimates from Krivov et al. (2003) impact ejecta model,
applied using parameters from LDEX regime, fall short by
orders-of-magnitude.

Any nanodust in near-lunar space would be slow to charge
— initial trajectories would depend on charge acquired
during ejection process.

Radiation pressure has a minor effect.

Lorentz force (E-field component) can dominate the motion
of nanodust ejected close the escape velocity.

Lorentz force could perhaps act to an increase in line-of-
sight abundances and form asymmetries in the distribution
of nanodust surrounding the Moon.




